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Generalization

¡The central challenge in machine learning is that we must perform well
on new, previously unseen inputs—not just those on which our model
was trained.

¡The ability to perform well on previously unobserved inputs is called
generalization.

¡During training, we can compute some error measure on the training set
called the training error.
¡ This is a typical optimization problem.

¡What separates machine learning from optimization is that we want the
generalization error, also called the test error, to be low as well.
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Underfitting and Overfitting

¡ Is a model the more complex the better?

¡ No. It will only perform well on the training data but poorly on the test data.

¡ Our goal is to make both the training error and the generalization error small.

¡ Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

¡ Overfitting occurs when the gap between the training error and test error is too large.
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Image source: https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf
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Underfitting and Overfitting

¡ We can control whether a model is more likely to overfit or underfit by altering its
capacity or complexity.
¡ For neural networks, increasing capacity can be done by adding more hidden layers or more neurons

per layer.
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Image source: Figure 5.3, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Underfitting and Overfitting

¡One extreme example is 1-Nearest
Neighbor (1NN) classifier.
¡ Simply calculate the distance between

the input and all samples in the training
set.

¡ And then use the label of the nearest
sample.

¡ It achieves 0 training error but
probably very high test error.
¡ Very large generalization gap.
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Voronoi diagram for 1NN

Image source: https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e



REGULARIZATION FOR DEEP LEARNING

6



!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Regularization

¡Regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but
not its training error.

¡It is one of the central concerns of the field of machine learning.
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Parameter Norm Penalties

¡Many regularization approaches are based on limiting the capacity of
models by adding a parameter norm penalty Ω(𝜽) to the objective
function 𝐽.
¡ E.g. neural networks, linear regression, logistic regression.

¡We denote the regularized objective function by &𝐽:
&𝐽 𝜽; 𝑿; 𝒚 = 𝐽 𝜽; 𝑿; 𝒚 + λΩ 𝜽 .

where λ ∈ [0,∞) is a hyperparameter called regularization parameter,
and Ω 𝜽 is called the regularization term or penalty term.

¡Now during training, we aim at minimizing 𝐽 𝜽; 𝑿; 𝒚 and Ω 𝜽 at the
same time with the tradeoff controlled by λ.

8



!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

𝐿! Regularization

¡One of the simplest and most common kinds of parameter
norm penalty is the 𝐿! regularization, aka 𝐿! norm.

Ω 𝒘 =
1
2
𝒘 !

! =
1
2
'
"

𝑤"! =
1
2
𝒘#𝒘.

¡In machine learning, it is commonly known as weight decay.

¡In statistics, it is commonly known as ridge regression or
Tikhonov regularization.
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𝐿! Regularization

¡With 𝐿! regularization, the objective function becomes:

&𝐽 𝒘;𝑿; 𝒚 = 𝐽 𝒘;𝑿; 𝒚 +
λ
2
𝒘 !

!.

¡ Its corresponding parameter gradient:
∇𝒘 &𝐽 𝒘;𝑿; 𝒚 = ∇𝒘𝐽 𝒘;𝑿; 𝒚 + λ𝒘.

¡A single step with gradient descent:
𝒘 ← 𝒘− 𝜂 ∇𝒘𝐽 𝒘;𝑿; 𝒚 + λ𝒘
𝒘 ← 1 − 𝜂λ 𝒘 − 𝜂∇𝒘𝐽 𝒘;𝑿; 𝒚 .

¡Compared with the one without 𝐿! regularization, we multiply a weight
decay term 1 − 𝜂λ on each step.
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Parameter Norm Penalties

¡Now assume that we have a
polynomial classification
model for 2-dimensional
input (𝑥# and 𝑥!):

𝑓 𝑥 = 𝜎 (
!"#

$

(
%"#

$

𝑤!%𝑥&!𝑥'
% .

¡ Logistic regression is its
special case when there are
only 𝑤++, 𝑤+# and 𝑤#+ are
used.
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Image source: https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf
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𝐿# Regularization

¡ While 𝐿4 regularization is the most common form of weight decay, there are other
ways to penalize the size of the model parameters.

¡ Another option is to use 𝐿5 regularization, aka 𝐿5 norm:

Ω 𝒘 = 𝒘 5 =%
6

|𝑤6| .

¡ With 𝐿5 regularization, the objective function becomes:
)𝐽 𝒘; 𝑿; 𝒚 = 𝐽 𝒘;𝑿; 𝒚 + λ 𝒘 5.

¡ Its corresponding parameter gradient:
∇𝒘 )𝐽 𝒘; 𝑿; 𝒚 = ∇𝒘𝐽 𝒘; 𝑿; 𝒚 + λ 1 sign 𝒘 ,

where sign(𝒘) is simply the sign of 𝒘 applied element-wise.
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Difference between 𝐿# and 𝐿! Regularization

¡ In comparison to 𝐿! regularization, 𝐿# regularization results in a solution
that is more sparse. Sparsity in this context refers to that most of
parameters have an optimal value of zero.

¡Dense parameters: 𝒘, = 0.2, 0.1, 0.3, 0.5, 0.1, 0.2, 0.5, 0.3 ,.

¡Sparse parameters: 𝒘, = 0, 0, 0, 2.1, 0, 0, 1.2, 0 ,.

¡From numerical point of view, 𝐿! regularization heavily penalizes large
terms and tolerates small term, but 𝐿# regularization equally treats them.

¡The sparsity property induced by 𝐿# regularization has been used
extensively as a feature selection or model interpretation.
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Difference between 𝐿# and 𝐿! Regularization

¡Equivalently, the regularized optimization can be written as the form of
constrained optimization:

min 𝐽 𝒘;𝑿; 𝒚
𝑠. 𝑡. Ω 𝒘 ≤ 𝑘

14
Image source: https://towardsdatascience.com/regularization-in-machine-learning-connecting-the-dots-c6e030bfaddd

¡From geometric point of view, the 
contour of the objective function 
has higher probability to hit the 
constraint corner of 𝐿# 
regularization.



!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Sparse Representations

¡Another strategy is to place a penalty on the activations of the
units in a neural network, encouraging their activations to be
sparse.

*𝐽 𝜽; 𝑿; 𝒚 = 𝐽 𝜽; 𝑿; 𝒚 + λΩ 𝒉 .
¡To achieve it, we can also use 𝐿$ penalty to limit the activations:

Ω 𝒉 = 𝒉 $ ='
"

|ℎ"| .
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Data Augmentation

¡The best way to make a machine learning model generalize
better is to train it on more data.

¡Of course, in practice, the amount of data we have is limited.

¡One way to get around this problem is to create fake data and
add it to the training set.
¡For some machine learning tasks, it is reasonably straightforward to

create new fake data.

16
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Data Augmentation

A few of the simple and popular data
augmentation techniques for images are:

¡ Flipping (both vertically and
horizontally)

¡ Rotating

¡ Zooming and scaling

¡ Cropping

¡ Translating (moving along the x or y
axis)

¡ Adding Gaussian noise (distortion of
high frequency features)

17
Image source: https://github.com/aleju/imgaug
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Noise Robustness

¡Use the same idea as norm penalties: make the model not learn
that well on the training set.
1. Inject noise to the network weights.
¡ Push the model into regions where the model is relatively insensitive to small

variations in the weights.
¡ Find weights that are not merely minima, but minima surrounded by flat regions.

2. Inject noise at the output targets.
¡Make the model not too sensitive to the mistake label in the training set.
¡ For example, label smoothing regularizes a model based on a softmax with 𝑘

output values by replacing the hard 0 and 1 classification targets with targets of
7

895
and 1 − 𝜖, respectively.
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Multi-Task Learning

¡ Multi-task learning aims to learn several tasks
at the same time.
¡ Thus, each task cannot be learned too well, so that

regularization is achieved.

¡ Multi-task learning model can generally be
divided into two kinds of parts and associated
parameters:
¡ Task-specific layers: only benefit from the examples of

their task to achieve good generalization.

¡ Generic layers or shared layers: benefit from the
pooled data of all the tasks.

19

Multi-task learning model with
deep neural networks

Image source: https://ruder.io/multi-task/
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Early Stopping

¡ Recall that, while training, we are not allowed to use test set to select the best model.
¡ It leads to data leakage.

20

The training set loss decreases consistently 
over time, but the validation set average loss 
eventually begins to increase again.

Image source: Figure 7.3, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.

¡ Instead we can refer to the validation
set.

¡ We can obtain a model with better 
validation set error by returning to the 
parameter setting at the point in time 
with the lowest validation set error. 
¡ Every time the error on the validation set 

improves, we store a copy of the model 
parameters. 
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Image source: Algorithm 7.1, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.

Recorded smallest validation error

Current validation error
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Advantages of Early Stopping

¡Early stopping is a very special form of regularization, in that it
requires almost no change in the underlying training procedure,
the objective function, or the set of allowable parameter values.
¡ It is easy to use early stopping without damaging the learning dynamics.

¡ It can be shown that early stopping is equivalent to 𝐿! regularization, in
the case of a simple linear model with a quadratic error function and
simple gradient descent.

¡Early stopping may be used either alone or in conjunction with
other regularization strategies.

22
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Early Stopping

¡ Early stopping requires a validation set, which means some training data is not
fed to the model.

¡ To best exploit the whole training data, one can perform extra training after
the initial training with early stopping has completed.

¡ There are two basic strategies one can use for this second training procedure:
¡ Retrain on all of the data for the same number of steps as the early stopping procedure
determined.

¡ Continue to train on the whole training data and monitor the average loss function on the
validation set.

¡ Both strategies are not guaranteed to be the best, because there is no
validation set any more.

23
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Dropout

¡Dropout provides a computationally inexpensive but
powerful method of regularizing a broad family of
models.

¡The term “dropout” refers to temporarily removing units
(hidden and visible) from the neural network.

¡Each unit is retained with a fixed probability 𝑝
independent of other units
¡ 𝑝 can be chosen using a validation set or can simply be set at 0.5.

¡ For the input units, however, the optimal probability of retention
is usually closer to 1 than to 0.5.

24
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Dropout

¡At training time, the unit is present with probability 𝑝 and is
connected to units in the next layer with weights 𝒘.

¡At test time, the unit is always present and the weights 𝒘 are
multiplied by 𝑝. The output at test time is same as the expected
output at training time.

25
Image source: Figure 1&2, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava, et al. , 2014.
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Adversarial Training

¡Adversarial examples are the
samples 𝒙′ that can be so similar
to 𝒙 that a human observer cannot
tell the difference, but the
network can make highly different
predictions.

¡Adversarial training makes the
model insensitive to small changes
by encouraging the network to be
locally constant in the
neighborhood of the training data.

26
Image source: Figure 7.8, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.

By adding an imperceptibly small vector 
whose elements are equal to the sign of 
the elements of the gradient of the cost 
function with respect to the input, we can 
change the classification of the image.



OPTIMIZATION FOR TRAINING DEEP MODELS
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Batch vs. Minibatch vs. Stochastic Algorithms

¡Optimization algorithms that use the entire training set are called batch
or deterministic gradient methods.

𝒘 ← 𝒘− 𝜂
1
𝑁
∇𝒘J

-.#

/
𝐿(𝑓 𝒙 - ; 𝒘 , 𝑦(-))

¡The data is usually stored as a form of matrix. Feeding all data into the
memory for gradient calculation is infeasible.

¡Can we calculate a small bunch of 𝑚 samples for one update, and
conduct 𝑁/𝑚 times to iterate over all samples?

Will the gradients averaged over 𝑚 samples deviate from the gradients
over 𝑁 samples?

28
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Batch vs. Minibatch vs. Stochastic Algorithms

¡Recall that the standard error of the mean estimated from 𝑛
samples is given by 𝜎/ 𝑛 , where 𝜎 is the true standard
deviation of the value of the samples.

¡The denominator of 𝑛 shows that there are less than linear
returns to using more examples to estimate the gradient.
¡Compare two estimates of the gradient, one based on 100 samples and

another based on 10,000 samples.

¡The latter requires 100 times more memory than the former, but
reduces the standard error of the mean only by a factor of 10.

29
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Batch vs. Minibatch vs. Stochastic Algorithms

¡Typically the term “batch gradient descent” implies the use of the
full training set.

¡Optimization algorithms that use only a single sample at a time are
sometimes called stochastic or sometimes online methods, e.g.,
“stochastic gradient descent”.

¡Most algorithms used for deep learning fall somewhere in between,
using more than one but less than all of the training examples.

¡These were traditionally called minibatch or minibatch stochastic
methods and it is now common to simply call them stochastic
methods.

30
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Batch vs. Minibatch vs. Stochastic Algorithms

¡ It can be somewhat confusing because the word “batch” often means
minibatch used by minibatch stochastic gradient descent.

¡ For example, it is very common to use the term “batch size” to describe the
size of a minibatch.

¡ Conventionally:

¡When we refer to stochastic gradient descent (SGD), it actually means
minibatch SGD.

¡When we refer to batch size, it actually means minibatch size.

¡ After we train through all of batches, we call it one epoch.

¡ Training deep models usually requires a number of epochs.

31
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Batch vs. Minibatch vs. Stochastic Algorithms

Minibatch sizes (batch sizes) are generally driven by the following factors:

¡ Larger batches provide a more accurate estimate of the gradient, but
with less than linear returns.

¡The amount of memory scales with the batch size. For many hardware
setups this is the limiting factor in batch size.

¡When using GPUs, it is common for power of 2 batch sizes to offer better
runtime. Typical power of 2 batch sizes range from 32 to 256.

¡Small batches can offer a regularizing effect, perhaps due to the noise
they add to the learning process.

32
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How Learning Differs from Pure Optimization 

¡In pure optimization, minimizing 𝐽(𝜃) is the final goal.
¡Pure optimization doesn’t care overfitting.

𝐽 𝜃 = 𝔼 𝒙,' ~ )*!"#"𝐿 𝑓 𝒙; 𝜽 , 𝑦

¡In machine learning, we minimize 𝐽(𝜃) on the training data but
we hope to find the minimized 𝐽(𝜃) on the test data.

𝐽∗ 𝜃 = 𝔼 𝒙,' ~*!"#"𝐿 𝑓 𝒙; 𝜽 , 𝑦

where A𝑝,-.- is the empirical distribution and 𝑝,-.- is the data
generating distribution.

33
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Empirical Risk Minimization

¡ If we knew the true distribution 𝑝!"#"(𝑥, 𝑦), risk minimization would
be an optimization task solvable by an optimization algorithm.

¡However, 𝑝!"#"(𝑥, 𝑦) is just the population distribution in statistics,
which can never be known.

¡ Instead, we have to minimize the empirical risk

𝔼 𝒙,& ~ ():;<;𝐿 𝑓 𝒙; 𝜽 , 𝑦 =
1
𝑚0

*+,

-

𝐿(𝑓 𝒙 * ; 𝜽 , 𝑦(*))

with some regularization methods.

34
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Challenges in Neural Network Optimization

Local Minima

¡For many years, most practitioners believed that local minima
were a common problem plaguing neural network optimization.
Today, that does not appear to be the case.

¡Experts now suspect that, for sufficiently large neural networks,
most local minima have a low cost function value, and that it is
not important to find a true global minimum rather than to find
a point in parameter space that has low but not minimal cost.

35
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Challenges in Neural Network Optimization

Saddle Points

¡ For many high-dimensional non-convex functions, local minima (and maxima) are in
fact rare compared to another kind of point with zero gradient: saddle point.

¡ Some points around a saddle point have greater cost than the saddle point, while
others have a lower cost.

36
Image source: https://math.libretexts.org/Bookshelves/Calculus/Map%3A_University_Calculus_(Hass_et_al)/13%3A_Partial_Derivatives/13.7%3A_Extreme_Values_and_Saddle_Points
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Challenges in Neural Network Optimization

37
Image source: Hung-yi Lee, Understanding Deep Learning in One Day
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Challenges in Neural Network Optimization

Cliffs and Exploding Gradients

¡ The objective function for highly
nonlinear deep neural networks often
contains sharp nonlinearities in
parameter space.

¡ These nonlinearities give rise to very high
derivatives in some places.

¡ A gradient descent update can catapult
the parameters very far, possibly losing
most of the optimization work that had
been done.

38
Image source: Figure 8.3, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Challenges in Neural Network Optimization

Cliffs and Exploding Gradients

¡The gradient does not specify the optimal step
size, but only the optimal direction within an
infinitesimal region.

¡A very heuristic solution: gradient clipping, just
cut the gradient if it exceeds a threshold.

39
Image source: https://towardsdatascience.com/what-is-gradient-clipping-b8e815cdfb48
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Stochastic Gradient Descent (SGD)

40
Image source: Algorithm 8.1, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.

Lecture 6, CMSC 35246 Deep Learning Spring 2017, University of Chicago

stochastic vs. batch
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Learning Rate of SGD

¡Batch gradient descent uses fixed learning rate, because the true
gradient of the total cost function becomes small when reach a
minimum.

¡SGD gradient estimator introduces a source of noise that does not
vanish even when we arrive at a minimum.

¡ In practice, it is necessary to gradually decrease the learning rate of
SGD over time, so we now denote the learning rate at iteration 𝑘 as
𝜀0.

𝜀0 = 1 − 𝛼 𝜀1 + 𝛼𝜀2
with 𝛼 = min 1, 𝑘/𝜏 . After iteration 𝜏, it is common to leave 𝜖
constant.

41
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Learning Rate of SGD

¡Learning rate is usually chosen by trial and error.

¡𝜏 is usually set to the number of iterations needed for a few
hundred passes through the training data.

¡𝜀/ should roughly be set to 1% of 𝜀0.

¡How to set 𝜀0?

42
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Momentum

¡The momentum method is a
method to accelerate learning
using SGD.

¡In particular SGD suffers in the
following scenarios:
¡Error surface has high curvature.

¡Small but consistent gradients.

¡The gradients are very noisy.

43
Image source: Lecture 6, CMSC 35246 Deep Learning Spring 2017, University of Chicago
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Momentum

¡ In physical world:

44
Image source: Hung-yi Lee, Understanding Deep Learning in One Day
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Momentum

¡ Each step of SGD has nothing to do with the previous gradient.

¡ Momentum introduces a new variable 𝒗, the velocity.

¡ The velocity is an exponentially decaying moving average of the negative gradients:

𝒗 ← 𝛼𝒗 − 𝜀∇𝜽
1
𝑚%

6>5

?

𝐿 𝑓 𝒙 6 ; 𝜽 , 𝒚 6

𝜽 ← 𝜽 + 𝒗

¡ The velocity accumulates the previous gradients.

¡ The role of 𝛼:
¡ If 𝛼 is larger than 𝜀 the current update is more affected by the previous gradients.

¡ Usually values for 𝛼 are set high ≈ 0.8, 0.9.
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Momentum

46

¡ The arrows indicate the steps that gradient descent would
take at that point.

¡ The red path indicates the path followed by momentum.

Image source: Figure 8.5 & Algorithm 8.2, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Momentum
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Image source: Hung-yi Lee, Understanding Deep Learning in One Day

Still not guarantee reaching global minima, but give some hope
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Adaptive Learning Methods 

¡Learning rate is one of the hyperparameters that is the most
difficult to set because it has a significant impact on model
performance.

¡Till now we assign the same learning rate to all parameters.

¡Can we automatically adapt these learning rates for each single
parameter?
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AdaGrad 

¡Adapts the learning rates of all parameters by scaling them
inversely proportional to the square root of the sum of all of
their historical squared values.
¡Parameters that have large partial derivative: their learning rates are

rapidly declined.

¡Parameters that have small partial derivative: their learning rates are
slowly declined.

¡AdaGrad performs well for some but not all deep learning
models.
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AdaGrad 
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Image source: Algorithm 8.4, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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RMSProp

¡AdaGrad is good when the objective is convex.

¡AdaGrad shrinks the learning rate according to the entire history
of the squared gradient and may have made the learning rate
too small before arriving at such a convex structure.

¡RMSProp uses an exponentially decaying average to discard
history from the extreme past.
¡Converge rapidly after finding a convex region.
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RMSProp
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Image source: Algorithm 8.5, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Adam

¡Adam is like RMSProp with Momentum but with bias correction
terms for the first and second moments.

¡Adam includes bias corrections to the estimates of both the
first-order moments (the momentum term) and the
(uncentered) second-order moments to account for their
initialization at the origin.
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Adam

54

Momentum

RMSProp

Image source: Algorithm 8.7, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Summary of Optimization Methods

¡SGD: 𝜽 ← 𝜽 − 𝜀P𝒈
¡Momentum:𝒗 ← 𝛼𝒗 − 𝜀P𝒈, 𝜽 ← 𝜽 + 𝒗

¡AdaGrad: 𝒓 ← 𝒓 + 𝒈⊙𝒈, Δ𝜽 ← − 9
:; 𝒓

⊙𝒈, 𝜽 ← 𝜽 + Δ𝜽

¡RMSProp: 𝒓 ← 𝜌𝒓 + 1 − 𝜌 𝒈⊙𝒈, Δ𝜽 ← − 9
:;𝒓

⊙𝒈, 𝜽 ← 𝜽 + Δ𝜽

¡Adam: 𝒔 ← 𝜌#𝒔 + 1 − 𝜌# 𝒈, 𝒓 ← 𝜌!𝒓 + 1 − 𝜌! 𝒈⊙𝒈

Y𝒔 ← 𝒔
#>?!

" , Y𝒓 ← 𝒓
#>?#

"

Δ𝜽 ← −𝜀 @𝒔
@𝒓;:

, 𝜽 ← 𝜽 + Δ𝜽
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Summary of Optimization Methods

56
Image source: https://mlfromscratch.com/optimizers-explained/#/
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Summary of Optimization Methods

¡At this point, a natural question is:

which optimization algorithm should one choose? 

¡Unfortunately, there is currently no consensus on this point.

¡It depends on:
¡ the complexity of the optimization problem,

¡user’s familiarity with the algorithm,

¡ trail and error.
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Batch Normalization 

¡ The distribution of each layer’s input changes
during training.

¡ Small changes to the network parameters
amplify as the network becomes deeper.

¡ This phenomenon is called internal covariate
shift.

¡ One solution is called batch normalization
(BatchNorm).
¡ It is one of the most exciting innovations in optimizing

deep neural networks.

58
Image source: https://www.slideshare.net/ssuserd6984b/batch-normalization
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Batch Normalization 
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Image source: https://towardsdatascience.com/backpropagation-and-batch-normalization-in-feedforward-neural-networks-explained-901fd6e5393e

https://towardsdatascience.com/backpropagation-and-batch-normalization-in-feedforward-neural-networks-explained-901fd6e5393e
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Batch Normalization 
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Image source: https://gradientscience.org/batchnorm/
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Batch Normalization 

¡Allow us to use much higher learning rates and be less careful
about initialization.

¡Improve training efficiency.

¡Act as a regularizer, in some cases eliminating the need for
Dropout.
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Batch Normalization 
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Image source: https://gradientscience.org/batchnorm/
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Parameter Initialization Strategies 

¡In convex problems, no matter what the initialization,
convergence is guaranteed.

¡In the non-convex regime initialization is much more important.
¡Some parameter initialization can be unstable, not converge.

¡Neural networks are not well understood to have principled,
mathematically nice initialization strategies.

¡We are only sure about one thing: the initial parameters need
to “break symmetry” between different units.
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Parameter Initialization Strategies 

¡Initialize weights by:
𝑊",1~𝒩 0,1

¡Then simply calculate
matrix multiplication
iteratively.

¡It explodes…
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Parameter Initialization Strategies 

¡Shrink it by a constant:
𝑊",1~𝒩 0,1 ∗ 0.01

¡Quickly decrease to zero…
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Parameter Initialization Strategies 

¡How about uniform
distribution?
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Xavier Initialization

¡Xavier Initialization (uniform and normal).

¡For a fully connected layer with 𝑚 inputs and 𝑛 outputs:

𝑊",1~𝑈 −
6

𝑚 + 𝑛
,

6
𝑚 + 𝑛

, 𝑊",1~𝒩 0,
2

𝑚 + 𝑛
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Xavier Initialization
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Xavier Initialization

¡Doesn’t work well
with ReLU.
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Kaiming Initialization

¡Kaiming Initialization (uniform and normal):

𝑊",1~𝑈 −
6
𝑚
,
6
𝑚

, 𝑊",1~𝒩 0,
2
𝑚
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Kaiming Initialization
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Conclusion

After this lecture, you should know:
¡What is underfitting and overfitting?

¡What is regularization?

¡What are the commonly used regularization methods?

¡How do optimization methods work?

¡What is batch normalization?

¡How to initialize parameters?
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Suggested Reading

¡ Deep learning textbook chapter 7-8.

¡ Dropout: A Simple Way to Prevent Neural Networks from Overfitting

¡ Sparsity and the LASSO

¡ Training with Noise is Equivalent to Tikhonov Regularization

¡ Why Momentum Really Works

¡ Large Scale Machine Learning with Stochastic Gradient Descent

¡ On the Importance of Initialization and Momentum in Deep Learning

¡ Batch Normalization: Accelerating Deep Network Training b y Reducing Internal
Covariate Shift
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https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
http://www.stat.cmu.edu/~larry/=sml/sparsity.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.3008&rep=rep1&type=pdf
http://distill.pub/2017/momentum/
http://leon.bottou.org/publications/pdf/compstat-2010.pdf
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
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Thank you!

¡Any question?

¡Don’t hesitate to send email to me for asking questions and
discussion. J
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